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TECHNICAL NOTE D-654

APPLICATION OF DESCRIBING-FUNCTION ANALYSIS TO THE
STUDY OF AN ON-OFF REACTION-CONTROL SYSTEM

By Edgar C. Lineberry, Jr., and Edwin C. Foudriat
SUMMARY

An analytical study was made of an automatic reaction-control sys-
tem for the upper stages of a missile to determine limit c¢ycle charac-
teristics, corresponding duty cycles, and the effects of the various
system parameters on these quantities. A nonlinear servo analysis
(describing function) technique was used to obtain a mathematical repre-
sentation of the nonlinear components of the system.

The results obtained by this analysis are compared with the results
obtained from an analog simulation including the jet reaction-control
hardware. The good agreement between the results of the two studies
tends to indicate the feasibility of using such an analysis technique
in the early design phase of a reaction-control system, since by so
doing, the parameters for good system performance can be determined
quite readily.

INTRODUCTION

Reaction-contrcl-system characteristics and requirements are usually
determined by simulating the system and the dynamics of the vehicle on
an analog computer. The system parameters for final design are obtained
from the tests. Such techniques, while necessary, are undesirably time
consuming especially for the early design stages when quick results and
a clear-cut plcture of the effects of various system parameters are
required. Therefore, there is a need for an analytical technique which
demonstrates the effects of the various system parameters and gives a
good approximation to the actual results and the system modes of operation.

The analysis of a closed-loop system in which all of the system
components can be represented by linear differential equations can be
made by using conventional methods. However, if nonlinear components
(components which display discontinuities in their operation) exist in
the system, the techniques must be revised in order to handle the non-
linearities. Such is the case with the reaction-control system studied



in this paper. A theoretical analysis is made of the reaction-control
system to determine the possible stable and unstable modes of opera-
tion, their corresponding duty cycles, and the effects of the various
system parameters on these quantities. The describing-function tech-
nigue (refs. 1 and 2) is used to obtain a mathematical representation
of the nonlinear components of the system.

It is the purpose of this paper to indicate the valldity of an
analysis with the use of the describing-function technique and the
feasibility of using such an analysis in the early design phase of a
reaction-control system. Inherent in the technique is the capability
of presenting clearly the effects of the system parameters upon the
system operation.

SYMBOLS
ALy By Fourier series coefficients
bj reaction-control-thrust moment arm, ft
bm misalinement-thrust moment arm, ft
D control-system dead zone, deg
Fj reaction-control thrust, 1b
Fn misalinement thrust, 1b
G linear gain
I moment of inertia, slug-ft2
J vector operator, J:I
k ratio of valve turn-off to turn-on time
Kq position gain, deg/deg
Ky rate gain, Eigégig
Ky acceleration constant, gi%lfiii

deg




N nonlinear gain

R ratio of misalinement moment to control moment
s Laplacian operator

t time, sec

X switching system input

Y switching system output

a, B nonlinéar switching angles, radians

¢ damping ratio

8 pitch angle, radians

n angular difference between on and off times, radians
T valve response time constant, sec

phase angle, deg

» frequency, radians/sec

n undamped natural frequency, radians/sec

W limit-cycle frequency, radians/sec
Subscripts: .
i control-system input

J reaction jet

r control-system output

1 fundamental component

ss steady state

A dot over a symbol designates the time derivative of the variable.



SYSTEM TO BE ANALYZED

The system being investigated controls the attitude of a missile
by producing moments to overcome disturbing moments encountered by the
vehicle. The restoring moments are produced by smsll reaction jets
mounted near the base of the vehicle with thrust vectors normal to the
vehicle longitudinal body axis. In this analysis the system is assumed
to control the pitch attitude of the upper stages of a missile in the
portion of its controlled flight where aerodynamic forces and moments
can be neglected. The remaining moments consist of thrust misalinement
resulting from the fixed main engine and the reaction-control moments.
With the assumption that the vehicle is rigid, a single-degree-of-
freedom system can be assumed, and the equation of motion becomes

16y = F3bj + Fpby (1a)

d
and after burnout of the main engine is
16, = Fibj (1v)

A block diagram of the control system is shown in figure l(a),
showing the nonlinear components, a reaction motor, the vehicle dynamics,
and the feedback system. The feedback system includes both perfect
rate and position feedback and may be obtained physically from a rate
and attitude gyro combination.

The nonlinear components consist of an electronic relay with a
threshold sensitivity or dead zone D and a two-stage electro-
pneumatic valve system. The operation of the system can best be illus-
trated by a time sequence of operation as shown in figure 1(b). When
the error signal exceeds the dead zone, as shown in the top trace,
the electronic switch is actuated. A finite time ~ +then elapses
before the pneumatic-control valve is actuated and fuel flows out of
the valve. ©Since the valve system turn-off time may not be the same
as the turn-on time, the constant k, the ratio of turn-off to turn-on
time, is used so that the turn-off time is kr.

In the operation of the reaction-motor-control system, an addi-
tional time lag occurs between the time the motor is turned on and the
steady-state thrust is reached, due to the buildup of gas pressure in
the chamber. This lag has been approximated by a second-order system
whose transfer function is

Fs (F3)ss
- (2)
Y g2 2ts

_._2.+_.._.+1

O




A comparison between the approximated and the actual control force is
shown at the bottom of figure 1(b).

DESCRIBING-FUNCTION TECHNIQUE

For a theoretical analysis using the describing-function technique
(refs. 1 and 2), the control system is divided into linear and nonlinear
subsystems. Consider the closed loop system in the form shown in fig-
ure 2, with the block N representing the nonlinear components and
G(s) representing the transfer function for the linear components.

For the reaction-control system under consideration, the linear trans-
fer function becomes:

Kas 1
G(s) = KZ( e 1) (3)
s2(§—§ s l)
Wy @n

In order for the describing-function analysis to accurately
represent the operation of the system, it must be true that the linear
sections of the system act as low pass filters; that is, the harmonics
which may be generated in the nonlinear system are attenuated to a
greater degree than the fundamental component of frequency. This tech-
nique was applied in the range where equation (3) fulfills this
requirement.

For a 1imit cycle or steady-state oscillation to be maintained
in the system, the frequency must be such that the system components
produce a total phase shift of 180° when the gain in the system is
unity. Using this relationship

NG(Jw) = -1 (%)
or

(5)

=2

6(Jw) = -

The describing function is used in the analysis to represent N.
In order to determine N, an input of the form:

X = Xl cos wt (6)

is imposed at the input to the nonlinear block of the system. An out-
put is assumed in the form of a Fourier series



Y = Ag + }: (Ap cos nwt + By sin nwt) (7)
n=1

with the coefficients as functions of the nonlinear system N. Because
of the assumption that the system acts as a low pass filter, the funda-
mental component will be the only one considered to affect the system.

Thus, the nonlinear gain N is the ratio of the fundamental component

to the amplitude of the sinusoidal input, or

N=—< (8)

N 1is determined by the describing-function method for the following
cases:

Case I. Describing Function with Reaction Control (Missile Coasting)

In order to determine the gain of the nonlinear components composed
of a dead zone *D and a fuel-control valve with a time lag T, an
input of the form

X = X, cos wt
is imposed on the system. From the previous discussion, the output is

Yy, = Ap + Ay cos wt + By sin wt
with the coefficients Ay, Aj, and By to be determined.

The system operation is shown graphically in figure 3(a). The
input triggers the electronic switch at -ag, the time + elapses

(corresponding to an angle wr) before the valve opens at -0, and
fuel begins to flow. The turn off is at ag and a,', respectively.

The identical operation takes place on the negative half cyecle. Thus,
for the positive half cycle, the angles at which the valve turn on and
off are given by:

-ag + @T (9)

and

' = oy + kot (10)

The phase shift as> for the nonlinear system is given by:




'+ (-a
ap = Sl__g_g__il = %}(l + k) = ¢ (ll)

It is possible to shift to a new axis, Qs shown in figure 3(b),

in order to simplify the evaluation of the coefficients of the Fourier
series. The input now takes the form

X

X; cos(wt + @) : (12a)

The output takes the form

Yy = Ag + Ay cos wt (12p)

Since the output reaction thrusts are symmetrical and equal about the
abscissa over the interval from O to 2x, the term Ay is equal to

zero. The A; term is given by

B
A =2 _/; b £(at)cos wt alwt) - 2 fﬂ f(at)cos wt a(wt)  (13)

7 8

where f(wt) s the valve output, is represented by unity. Since

flot) = 1 OSwt <B
( 1) (2
flot) = -1 ([32 S wt < :t)
and
Bo =1 - Bl (15)
substituting into equation (13) gives
B 1r
Ay = % f 1 cos wt d(wt) - % f cos wt d(wt) (16)
0 1'[—[31
Now
@' - ('a'l) w ’
By = > = ag + 2—T(k - 1) (17)




and
D = Xj cos ogy (18)
or
- -1 D
ay = cos g (19)
Therefore,
By = cos™t D4 LTk - 1) ‘ (20)
X 2

Substituting equation (20) in equation (16) and integrating gives

oy, -1 D . wr,
Ay = = s1n[cos X + ?(k - l)J (21)

The describing function of the nonlinear components is given by

oo I -1 D wT —j¢
N = — = = + 2k - 22
sinfcos + =(k - 1)|e (22)

where ¢ is given by equation (11).

The expression for N can now be substituted into equation (5) y
giving

- = - 6(Jw) (23)

T
- 59 (k+1)
& sinjeos~l 2 + LUk - 1)]e °
Xl 2

The values of ® and )—?— which satisfy this relationship can be
1

determined graphically from the intersections of the curves G(jw) and
- % in a plot of gain against phase angle. Only one curve results for

the linear expression G(Jjw) for values of . For the nonlinear



expression, however, a different curve with %l as a'parameter, results
1

for each value of . By observing, however, that the phase angle for

the nonlinear expression N varies only with w, a value of w can be

determined where the phase angles of the two expressions G(Jjwo) and

- % are equal. Thus, at this particular value of w, the N and the

G curves represent a possible intersection point. Rearranging equa-
tion (23) and substituting the particular value of ® results in

1 . -1 D wTr 1t
— sinjcos™ — + =k - 1)| = — 24
Xl[xlg( )}MG (24)
Letting
¢ = L = Constant (25)
ha
and
n = %l(k - 1) = Constant (26)
gives
1 -1 D
— sin|cos™ — + 7] =C (27)
) [ X, ]
Applying trigonometric identities,
X—1-2-[Xl2 - cos n + D sin 'r]] =C (28)
1

Rearranging and solving for %l by letting
: 1

B = 2CD sin n + cosen (29)
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gives
1/3 1/2

D2, (.fif ] CEDE) (30)

Thus two values of %l occur representing two possible oscillatory
1

conditions.

A typical graphical diagram of the curve N(%13a9 for one wvalue
1

of w as %L varies from O to 1 is shown in figure 4. As shown,
1
for a common frequency y the curve for - % intersects the curve

for G(jo) at two points b and c¢ as demonstrated by equation (30).

It should be noted in figure U4 that the curves for descending and
ascending gain have been separated aleng their abscissa for clarity.
Actually the curves, because of constant phase angle, are coincident
and are hereinafter plotted in that manner.

As shown in reference 1, it is necessary to determine the incre-
mental increase or decrease in the amplitude of the output Y for an
incremental increase in Xj; to determine whether the oscillatory con-
dition corresponds to a stable or unstable limit cycle. Applying this
analysis shows the first intersection for increasing X; to be unstable

and the second intersection to be stable. Thus, the interpretation of
figure 4 is that for the %L region from a to b a stable system

1
exists in which the amplitude will die out, the region from b to ¢
corresponds to an unstable region in which an oscillation will build
up to the amplitude Xl at ¢, and the region from ¢ to d cor-
responds to a stable region in which the amplitude will reduce to the
amplitude Xl at c¢. Thus, the solutions of equation (50) correspond
to the stable and unstable points, respectively.

If in equation (30)

P > % (31)

a limit-cycle conditicn will not exist at this frequéncy. This rela-
tionship serves to predict the condition for which the net gain will
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always be less than unity. Such a condition results in the variation

of gain with phase angle for the case in whieh the curves for the linear
and nonlinear expressions have no intersection at a common frequency.

If this is the case, it is desirable to determine the gain margin (the
difference between the gains of the linear and nonlinear expressions)
which would be necessary to cause a limit-cycle condition. Therefore,
the value of the input amplitude for minimum L (or maximum nonlinear
gain) must be determined. This is accomplished by differentiating %

with respect to X, and equating the resulting expression to zero, or

Lo . ( -1D L ( -1 D -1 D
= sinfcos ~ =+ n) - = Xy cosfcos — — + n)
T Xy ) 7l Xy Dfxg

1 1l1- (= 1
Q(ﬁ) (Xl 0
dX 2
1 , %Ein(cos'l 2 + 'q)]
X
1
(32)
Rearranging equation (32) and applying trigonometric identities,
2 ) 2 0\1/2
X1 - 2D +2D(Xl —D) tan n = 0O (33)
, . D .
Solving equation (33) for = elives
1
N _ 1/2
D _ ( + sin n) (
D (=1 34)
Xy 2
or the value of %l for minimum %. Thus, for example, for a valve
1
with equal turn-on and turn-off time, that is, n equals zero, %l
1
equals O.7T1.

Another special condition exists, as illustrated in figure 3(a),
when the valve lag time is longer than the time for the input to turn
on and off the electronic switch. For this condition when

2ag < 0T (35) .
or when substituting from equation (19)
D Wt
X < cos = (36)
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no output appears and the gain N(%1309 goes to zero. This represents
1
a condition on the curve where no physical operation is possible. Thus,

the maximum %L possible can be calculated as a function of the valve
1

switching time.

The duty cycle, the time percentage of one cycle of operation that
the reaction motors are on, can glso be determined by the describing
function. From figure 3(b),

2
Duty cycle = —g; (57)

Substituting equation (20) into equation (37) gives

2 cos™t %L + wr(k - 1)
Duty cycle = lﬂ (38)

with %L and o determined from the stable equilibrium locus of the
1

the curves G(jw) and - %.

Case II. Describing Function for Reaction Control and
Main Thrust Misalinement (Missile Thrusting)
In this analysis the gain of the secondary system composed of the
nonlinear components, is determined by imposing on the system an input

of the form

X =Xq + Xp cos wr (39)

In this case, however, the operation may not be symmetrical about the
abscissa so that the output requires not only a fundamental term but
also a constant term. Thus,

Yl = AO + Al cos WT

The system operation is shown in figure 5 with the output now being
composed of a summation of the control and misglinement moments, or




£(t)
£(t) = -Fyby

£(t) Fib

1}

i

i}

J - Frbm

Evaluating the angles gives

The phase shift

As 1n the previous case a new axis is chosen about Y giving

Ag

where

and

Substituting equations (45) and (46) into equation (44) gives

-0 = -0y t T
' =09 + kot
% is given by

A )

a 5 = %}(k +1) = ¢

AL 1 [T
= k/; (Fjbj - Fmbm)d(wt) -z u/; Fp b, d(wt)

1
F.b-
J J
7 Bl = Fpby
Cx'l‘ - (-%) _ wT
By =5 =+ Tk - 1)
D-X
_ -1 0
ay = cqs

1

13

(ko)

(41)

(42)

(43)

(k)

(45)

(46)
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F.b. D-X
-1
AO = ‘1(‘] EOS -—i:l—.—o + %(k - lﬂ - Fmbm ()4-7)

However, for a steady-state condition to exist AO must equal zero

giving

D-X F b.x
cos™1 0 & - | - BT (48)
Xl 2 .

which is one condition which must be fulfilled in the case of thrust
misalinement.

Evaluating the fundamental or Al term gives

a

Bl 7
Al = /; (Fsbs - Fmbp)cos wt d(wt) - % ~/;1 Fpby cos wt d(wt)

Again substituting equations (45) and (46) gives
. D-X
Al = % Fij SinEOS 1 To + %(k - l‘-;] (50)
Substituting equations (48) into equation (50),

2F.b. b, 1t
P e (Tm m
3 <~ sin 7353 (51)

Rearranging equation (51) and letting

== =R (52)
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gives
sin |R
Ay = 2Fpby R[ ] (53)
The nonlinear expression is thus
. (DT
B Al ‘j¢ _ 2Fmbm sin [R] -J?(k'l'l) )+
N = X-—- e = T R e (5 )
1 1
Substituting equation (54) into equation (5) yields
1
- = G(Jw) (55)

. o sQT
2F b sin [®] . 32 (k+1)
X, R

A graphical solution is necessary to determine the value of
and Xy which satisfy the relationship. Again noting that the phase

angle of nonlinear expression varies only with w a value of ® can
be determined for which the phase angles of the two expressions are
equal. Substituting the value of linear gain which corresponds to the
particular value of ® into equation (55) yields

1

=G
2Fpby sin [R]

or

X = (56)

Thus, only one value of Xl results for a limit-cycle condition. Equa-
tion (54) shows that the nonlinear gain varies inversely with Xl’ and

disturbances in the input amplitude would cause oscillations either to
build up or to decay back to the value given by equation (56). Thus,
equation (56) represents a stable equilibrium condition.

+
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The steady-state error Xg can also be determined for the equilib-
rium condition. By equation (48)

D-X F b
-1 0 wT m'm
cos™t —— + =k - 1) =
Xy 2 Fij
or
nF b
- mm @ty
Xo Xy cos[%.b. 5 (1 kﬂ +D (57)
Jd7d
The duty cycle can be expressed by
By
Duty cycle = —=— (58)
or, by equation (45) and equation (k6),
D-X
cos™t _X_o + ZH{k - 1)
Duty cycle = L (59)
Substituting equation (48) yields
Fb
Duty cycle = ?EJE - (60)
SES

Thus the duty cycle is simply the ratio of the misalinement to the
reaction-control moment.

This study does not consider another mode of operation which might
exist for a condition of smaller main-thrust misglinement. In looking
again at figure 5, if the misalinement thrust is sufficiently small com-
pared with the control thrust, the error signal will cross the dead zone
-D 1in the negative half cycle and cause a control-thrust pulse. Such
a condition is amenable to the describing-function analysis in the same
manner as the two cases previously discussed. However, it was not con-
sidered to be as critical for design purposes as the cases investigated.
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RESULTS AND DISCUSSION

The results obtained by applying the describing-function technique
are compared with the results obtained in a simulation of an actual
vehicle reaction-control system. In the simulation study the actual
hardware, including reaction motors, was used in conjunction with an
analog computer which simulated the dynamics of the vehicle.

The system parameters used in the analytical study are the best
estimates of the hardware characteristics from the simulation study in
order that a comparison of the results of the two studies might be made.
These parameters are presented in table I. In the simulation study,
exponential functions were used to approximate the peak, nominal, and
decaying thrust of the main engine. For the analytical study, however,
only the nominal thrust value was used with an engine burning time deter-
mined by the value of total impulse used in the simulation study.

Missile Coasting Phase

By using the analytical techniques developed in the previous sec-
tions and the hardware parameters shown in table I, an analysis of the
coasting phase of flight has been made. Figures 6 and 7 show plots of
equation (23) for lag times of "slow" and "fast" valves, respectively,
and a nominal thrust level of 486 pounds.

Figure 6 shows gain plotted against phase angle for various values
of frequency and input amplitude for the nonlinear expression (- ¥

As noted previously, a single curve can be used to describe G(jw) with
frequency as a parameter. However, separate curves are required for

each value of w for the nonlinear expression - %(jw). Bach of these
curves is vertical and extends from a gain of infinity to a minimum at

approximately 27db and then back to a maximum as %L varies from O to 1.
1

Since the range of general interest will be between %l of 0.1 to 0.9,
1

only this range has been shown on most of the curves. Attention should
again be called to figure 4 to note that this line is double valued.
As can be seen in figures 6 and 7, increasing frequencies cause the phase
of %L to vary from -178° at ® = 0.25 to -69° at o = 15.

1

In figure 6 an intersection of the curves for G(jw) and -

o = |

occurs for a common frequency of 8.1L4 radians/sec. This corresponds
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to the frequency where limit-cycle oscillstions can take place. At this

point %l values of 0.565 and 0.775 occur. As previously discussed with
1

figure U4, there are two possible modes of stable operation; the input

D
amplitude will die out if the system is operating at a o value greater
1

than 0.775, and a limit cycle at the amplitude Xy = 5 265 will occur

for a %1 value less than 0.775. Thus a shock-excited limit cycle is

1
possible, and indeed in the hardware test one did exist at a measured
frequency of 6.8 radians/sec. The duty cycle predicted from the analysis
using equation (38) is 58 percent which compares favorably with the
L8-percent duty cycle obtained from the actual tests.

It could be reasoned that with proper adjustment a %2 value
1

greater than 0.775 could be maintained, and thus no limit cycle would
exist. Theoretically this may be possible, but in the analysis it was

shown that a maximum value of %l also exists. This has also been
1

plotted as the dotted line on figure 6. Thus, the only permissible

range, as illustrated by equation (30), in which a limit-cycle condi-

tion will not exist is from %L of 0.84k to 0.775. It can be argued

1
intuitively that this is not a sufficient gain range (approximately
1db) for operation without the existence of a limit cycle and that the
impulse thrust from a reaction motor firing will have sufficient fre-
quency content at the resonant frequency to cause the system to be shock
excited into a limit-cycle oscillation.

Figure 7 shows the same system operation with fast valves. Here

no intersection of the G(jw) and - % curves takes place for a com-
mon frequency under the assumed conditions. Therefore, no limit-cycle
frequency will exist at this point. This was found to be true in the

hardware tests. It should be noted that this system has a 6db gain mar-
gin before limit-cycle oscillations at 17.1 radians/sec would take place.

Only one value of rate gain, Ky = 0.4, was used in the hardware

tests. A survey of the feedback stabilization gains was made analyti-
cally in order to determine the best possible gain, Ké, for the slow

values and a nominal thrust level of 486 pounds. The results are shown
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in figure 8 where the grid of values plotted shows the G(jw) loci
for frequencies from 3 to 10 radians/sec and values of Ké from 0.1

to 1.0 deg/deg/sec. Plotted also are the - % curves for the same

range of frequencies and the maximum value of the nonlinear gain, N

max’
(corresponding to minimum %) obtained by using equation (34). The
dashed curve shows the loci of the intersections of the curves G(Jjw)
and - % or the limit-cycle conditions. Under the conditions assumed

the best gain range is for 0.22 <Kj < 0.37 since for these conditions

the curves do not intersect since the points are below line.

Nppo x
However, since the gain margin is on the order of 1ldb it is expected
that the system operation would be critically dependent upon hardware
variations.

If the higher thrust level of 586 pounds was used, a limit-cycle
condition would exist for all values of rate gain. However, it would
still be desirable to specify those rate gains which give minimum duty
cycle since they correspond directly to minimum fuel expenditure. This
has been determined by use of equations (30) and (38) and is plotted in

figure 9. For these conditions gains of Ké > 0.28 give the better

conditions for minimum duty cycle.

Missile Burning Phase

An analysis of the operating conditions for the missile during its
burning phase has been made by using the previously developed techniques
and the results compared with the actual analog tests. A graphical
determination of the limit-cycle conditions using equation (55) for the
fast and slow valves is shown in figures 10 and 11, respectively, at a
point in time 16 seconds after the ignition of the main engine.

These figures show that an oscillatory condition will always exist
at the frequency of intersection. By using equation (60) and the values
from figure 10, the duty-cycle and limit-cycle conditions plotted against
thrust misalinement are shown for the fast valves in figure 12, Also
plotted in figure 12 are the data from the analog tests. "A similar set
of curves are shown in figure 13 for the operation of the slow valves.

The figures show a reasonable and conservative estimate for the
duty cycle. The calculated values of duty cycle are greater than the -
corresponding test values. This discrepancy can be accounted for, how-
ever, by the fact that nominal thrust levels were assumed for the cal-
culated values. During high-frequency operation of the rocket motors,



20

however, the transient thrust period becomes predominant, and the average
thrust over the time interval of operation is greater than the nomingl
value. The two results will give identical values in the determination
of fuel consumption during a specified time interval if average thrust
values are used in the analytical equation.

However, for the limit-cycle condition, agreement is not as good
because the analytical results predict that the frequency of 1limit cycle
does not change with thrust misalinement while the test data show a
definite increase with increasing misalinement. One factor which has
been neglected in the approximation and which might account for this
discrepancy is the effect of the higher harmonics on the input to the
system. Since the amount of harmonic content present is altered for
different values of R, this could, in turn, alter the limit-cycle fre-
quency. The method for analyzing the effect of higher harmonics is shown
in reference 2, but since this method is long and tedious, no attempt has
been made to apply it to these results. It is true, however, that the
results do afford a good prediction to the average frequency of the limit
cycle, as is shown in figure 1h.

The describing function by using equation (57) can also be used to
predict the steady-state error about which the system oscillates. Fig-
ure 15 shows that very good agreement exists between the analytical and
test results.

Reaction-Control Fuel Consumption

The values of duty cycle previously determined were used to compute
the reaction-control fuel consumption for a 30.85-second period of main
rocket motor burning followed by a 5-second coast period. The following
assumptions were used in making the calculations:

(1) The reaction motor burns for 2 seconds during the first
5 seconds to overcome initial transients.

(2) A limit-cycle condition exists for the remainder of the main
motor burning period.

(3) A 1limit-cycle condition exists for the entire S5-second coast
period when the slow valves are employed.

(4) When fast valves are used, an arbitrary duty cycle of 10 per-
cent 1is assumed during the coast period.

By using these assumptions, the fuel consumed over the time interval
was determined by dividing the total impulse by the specific impulse
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of the fuel. The analytical results are compared with the fuel-consumption
test results obtained by determining the actual fuel weight differential
for the test run. The comparison is shown in figure 16. As indicated by
the figure, excellent agreement exists between the results of the two
studies.

CONCLUDING REMARKS

The analysis, discussion, and comparison with actual hardware tests
have illustrated that by use of the describing-function technique, it is
possible to predict by analytical techniques some of the important fac-
tors involved with the design of an on-off reaction-control system. The
following conclusions can be stated:

1. The technique is applicable to the condition of main engine
thrusting and coasting phases of flight.

2. The limit-cycle frequency can be estimated for both phases.

3. The duty cycles can be obtained for both phases. From the duty
cycle it is possible to estimate the guantity of fuel used.

4k, The parameters which affect the existence of a limit-cycle fre-
quency for the coast phase can be studied. The effect of feedback,
thrust level, dead band, and valve lag can all be taken into account in
the design analysis.

5. The results of the analytical study show good correlation with
results obtained in an analog simulation including reaction-control
hardware.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Field, Va., Cctober 31, 1960.
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TABLE I.~ SYSTEM PARAMETERS

Reaction motor characteristics (dynamic response of

Nominal thrust level, (Fj) , 1b .

Damping, & . . . . . . . . ..
Undamped natural frequency, wh, radlans/sec

Valve response:

Slow valves -
Amount of time to turn on, sec .. .
Amount of time to turn off, sec . .

Fast valves -

Amount of time to turn on, sec .

Amount of time to turn off, sec . .
System dead zone, radian . . . . o v e e e e
Main-thrust-misalinement angle, deg .« e e e e
Main-engine thrust, 1b . . . . . . . . . . . .
Burning time, sec . . . . . . o o000 0.
Vehicle coast time, sec .

Pitching moment of inertia (0 S t £ 30), I,

slug-ft2 e e e e s e e v e e s
Reaction-control-thrust moment arn

(0St<€30), by, Tt . . . . . . .. .. ..
Misalinement-thrust moment arm (0 £t < 320),

By TL o 0 o o v e u s e
Position gain, Ke, deg/deg e e e e e e e
Rate gain, Ky, deieiég". e e e e

1b-sec

Specific impulse of hydrogen peroxide, T

-

(2))

1486 ana 586

0.6
b5

0.1k
0.12

0.06
0.05
+0. 01k

: 0. l O 1769, and 0.25

63, 000
30.85
5

32,700 - 265t - 5.6t2

14 + 0.00641:,2

15.6 + 0.0064t>

1

0.4

132



23

‘W93.84S TOIJUOD-UOT3OBIY —-°'T SINITL

‘wa1sLs JO wBISBIP YoOoTd (®)

SJI0SUIS

soTweulp
8TOTUaA

uotarsod
pue sqjey

squauodwod JeaUTTUON

aATBA TOJIJUOD

|
| “
|
Togom || ovaeumoud unws | __ @u S

i ;

uotqoeay Hm pue To dTUOX308TT X I
|
|
L

otqyeimaud
' —01309717




24

/ Error signal

Error signal

to electronic |~ .~ — — — —~f T —————— e
switch Dead zone

Time

Voltage output
of electronic
switch

Time

Fuel output of
pneumatic control

I
|
|
|
I
I
I
1
valve r‘_
I

] — —— — ——

Time

q
i

-

5
i

Control thrust

(b) Sequential operation of system.

Figure 1.- Concluded.
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Figure 4.- Limit-cycle stability analysis.
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thrust misalinement.
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